Copied to
clipboard

G = C24.175C23order 128 = 27

15th non-split extension by C24 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C24.175C23, C41(C23⋊C4), C22⋊C420D4, (C22×D4)⋊8C4, C24.10(C2×C4), C22.57(C4×D4), C23.8(C4○D4), C23.571(C2×D4), (C22×C4).300D4, C23.7Q88C2, C22.4(C41D4), C22.18(C4⋊D4), C23.196(C22×C4), (C23×C4).265C22, (C22×D4).45C22, C22.34(C4.4D4), C2.28(C23.C23), C2.16(C24.3C22), (C2×C4⋊C4)⋊14C4, (C2×C23⋊C4)⋊7C2, (C2×C22⋊C4)⋊6C4, (C4×C22⋊C4)⋊24C2, C2.28(C2×C23⋊C4), (C2×C4⋊D4).11C2, (C22×C4).23(C2×C4), (C2×C4).201(C22⋊C4), (C2×C22⋊C4).15C22, C22.286(C2×C22⋊C4), SmallGroup(128,696)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C24.175C23
C1C2C22C23C24C23×C4C4×C22⋊C4 — C24.175C23
C1C2C23 — C24.175C23
C1C22C23×C4 — C24.175C23
C1C2C24 — C24.175C23

Generators and relations for C24.175C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=c, f2=ca=ac, g2=b, ab=ba, eae-1=faf-1=ad=da, ag=ga, bc=cb, bd=db, geg-1=be=eb, bf=fb, bg=gb, fcf-1=cd=dc, ce=ec, cg=gc, de=ed, df=fd, dg=gd, fef-1=ae, fg=gf >

Subgroups: 508 in 204 conjugacy classes, 58 normal (28 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, C24, C2.C42, C23⋊C4, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4⋊D4, C23×C4, C22×D4, C22×D4, C4×C22⋊C4, C23.7Q8, C2×C23⋊C4, C2×C4⋊D4, C24.175C23
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4○D4, C23⋊C4, C2×C22⋊C4, C4×D4, C4⋊D4, C4.4D4, C41D4, C24.3C22, C2×C23⋊C4, C23.C23, C24.175C23

Smallest permutation representation of C24.175C23
On 32 points
Generators in S32
(2 28)(4 26)(6 17)(8 19)(10 14)(12 16)(22 30)(24 32)
(1 15)(2 16)(3 13)(4 14)(5 21)(6 22)(7 23)(8 24)(9 25)(10 26)(11 27)(12 28)(17 30)(18 31)(19 32)(20 29)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 27)(2 28)(3 25)(4 26)(5 20)(6 17)(7 18)(8 19)(9 13)(10 14)(11 15)(12 16)(21 29)(22 30)(23 31)(24 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 2 3 26)(4 27 28 25)(5 30 7 24)(6 31 19 29)(8 21 17 23)(9 14 11 12)(10 15 16 13)(18 32 20 22)
(1 23 15 7)(2 8 16 24)(3 21 13 5)(4 6 14 22)(9 20 25 29)(10 30 26 17)(11 18 27 31)(12 32 28 19)

G:=sub<Sym(32)| (2,28)(4,26)(6,17)(8,19)(10,14)(12,16)(22,30)(24,32), (1,15)(2,16)(3,13)(4,14)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(17,30)(18,31)(19,32)(20,29), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,13)(10,14)(11,15)(12,16)(21,29)(22,30)(23,31)(24,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,2,3,26)(4,27,28,25)(5,30,7,24)(6,31,19,29)(8,21,17,23)(9,14,11,12)(10,15,16,13)(18,32,20,22), (1,23,15,7)(2,8,16,24)(3,21,13,5)(4,6,14,22)(9,20,25,29)(10,30,26,17)(11,18,27,31)(12,32,28,19)>;

G:=Group( (2,28)(4,26)(6,17)(8,19)(10,14)(12,16)(22,30)(24,32), (1,15)(2,16)(3,13)(4,14)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(17,30)(18,31)(19,32)(20,29), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,13)(10,14)(11,15)(12,16)(21,29)(22,30)(23,31)(24,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,2,3,26)(4,27,28,25)(5,30,7,24)(6,31,19,29)(8,21,17,23)(9,14,11,12)(10,15,16,13)(18,32,20,22), (1,23,15,7)(2,8,16,24)(3,21,13,5)(4,6,14,22)(9,20,25,29)(10,30,26,17)(11,18,27,31)(12,32,28,19) );

G=PermutationGroup([[(2,28),(4,26),(6,17),(8,19),(10,14),(12,16),(22,30),(24,32)], [(1,15),(2,16),(3,13),(4,14),(5,21),(6,22),(7,23),(8,24),(9,25),(10,26),(11,27),(12,28),(17,30),(18,31),(19,32),(20,29)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,27),(2,28),(3,25),(4,26),(5,20),(6,17),(7,18),(8,19),(9,13),(10,14),(11,15),(12,16),(21,29),(22,30),(23,31),(24,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,2,3,26),(4,27,28,25),(5,30,7,24),(6,31,19,29),(8,21,17,23),(9,14,11,12),(10,15,16,13),(18,32,20,22)], [(1,23,15,7),(2,8,16,24),(3,21,13,5),(4,6,14,22),(9,20,25,29),(10,30,26,17),(11,18,27,31),(12,32,28,19)]])

32 conjugacy classes

class 1 2A2B2C2D···2I2J2K4A4B4C4D4E···4N4O···4T
order12222···22244444···44···4
size11112···28822224···48···8

32 irreducible representations

dim1111111122244
type++++++++
imageC1C2C2C2C2C4C4C4D4D4C4○D4C23⋊C4C23.C23
kernelC24.175C23C4×C22⋊C4C23.7Q8C2×C23⋊C4C2×C4⋊D4C2×C22⋊C4C2×C4⋊C4C22×D4C22⋊C4C22×C4C23C4C2
# reps1114142244422

Matrix representation of C24.175C23 in GL6(𝔽5)

400000
040000
001000
000100
000040
000004
,
400000
040000
001000
000100
000010
000001
,
400000
040000
001300
000400
000042
000001
,
100000
010000
004000
000400
000040
000004
,
200000
030000
000040
000041
004200
004100
,
030000
200000
000010
000001
001300
000400
,
040000
100000
004000
000400
000040
000004

G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,3,4,0,0,0,0,0,0,4,0,0,0,0,0,2,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[2,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,4,4,0,0,0,0,2,1,0,0,4,4,0,0,0,0,0,1,0,0],[0,2,0,0,0,0,3,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,4,0,0,1,0,0,0,0,0,0,1,0,0],[0,1,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4] >;

C24.175C23 in GAP, Magma, Sage, TeX

C_2^4._{175}C_2^3
% in TeX

G:=Group("C2^4.175C2^3");
// GroupNames label

G:=SmallGroup(128,696);
// by ID

G=gap.SmallGroup(128,696);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,288,422,100,2019,1018,2028]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=c,f^2=c*a=a*c,g^2=b,a*b=b*a,e*a*e^-1=f*a*f^-1=a*d=d*a,a*g=g*a,b*c=c*b,b*d=d*b,g*e*g^-1=b*e=e*b,b*f=f*b,b*g=g*b,f*c*f^-1=c*d=d*c,c*e=e*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,f*e*f^-1=a*e,f*g=g*f>;
// generators/relations

׿
×
𝔽