p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.175C23, C4⋊1(C23⋊C4), C22⋊C4⋊20D4, (C22×D4)⋊8C4, C24.10(C2×C4), C22.57(C4×D4), C23.8(C4○D4), C23.571(C2×D4), (C22×C4).300D4, C23.7Q8⋊8C2, C22.4(C4⋊1D4), C22.18(C4⋊D4), C23.196(C22×C4), (C23×C4).265C22, (C22×D4).45C22, C22.34(C4.4D4), C2.28(C23.C23), C2.16(C24.3C22), (C2×C4⋊C4)⋊14C4, (C2×C23⋊C4)⋊7C2, (C2×C22⋊C4)⋊6C4, (C4×C22⋊C4)⋊24C2, C2.28(C2×C23⋊C4), (C2×C4⋊D4).11C2, (C22×C4).23(C2×C4), (C2×C4).201(C22⋊C4), (C2×C22⋊C4).15C22, C22.286(C2×C22⋊C4), SmallGroup(128,696)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.175C23
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=c, f2=ca=ac, g2=b, ab=ba, eae-1=faf-1=ad=da, ag=ga, bc=cb, bd=db, geg-1=be=eb, bf=fb, bg=gb, fcf-1=cd=dc, ce=ec, cg=gc, de=ed, df=fd, dg=gd, fef-1=ae, fg=gf >
Subgroups: 508 in 204 conjugacy classes, 58 normal (28 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, C24, C2.C42, C23⋊C4, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4⋊D4, C23×C4, C22×D4, C22×D4, C4×C22⋊C4, C23.7Q8, C2×C23⋊C4, C2×C4⋊D4, C24.175C23
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4○D4, C23⋊C4, C2×C22⋊C4, C4×D4, C4⋊D4, C4.4D4, C4⋊1D4, C24.3C22, C2×C23⋊C4, C23.C23, C24.175C23
(2 28)(4 26)(6 17)(8 19)(10 14)(12 16)(22 30)(24 32)
(1 15)(2 16)(3 13)(4 14)(5 21)(6 22)(7 23)(8 24)(9 25)(10 26)(11 27)(12 28)(17 30)(18 31)(19 32)(20 29)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 27)(2 28)(3 25)(4 26)(5 20)(6 17)(7 18)(8 19)(9 13)(10 14)(11 15)(12 16)(21 29)(22 30)(23 31)(24 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 2 3 26)(4 27 28 25)(5 30 7 24)(6 31 19 29)(8 21 17 23)(9 14 11 12)(10 15 16 13)(18 32 20 22)
(1 23 15 7)(2 8 16 24)(3 21 13 5)(4 6 14 22)(9 20 25 29)(10 30 26 17)(11 18 27 31)(12 32 28 19)
G:=sub<Sym(32)| (2,28)(4,26)(6,17)(8,19)(10,14)(12,16)(22,30)(24,32), (1,15)(2,16)(3,13)(4,14)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(17,30)(18,31)(19,32)(20,29), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,13)(10,14)(11,15)(12,16)(21,29)(22,30)(23,31)(24,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,2,3,26)(4,27,28,25)(5,30,7,24)(6,31,19,29)(8,21,17,23)(9,14,11,12)(10,15,16,13)(18,32,20,22), (1,23,15,7)(2,8,16,24)(3,21,13,5)(4,6,14,22)(9,20,25,29)(10,30,26,17)(11,18,27,31)(12,32,28,19)>;
G:=Group( (2,28)(4,26)(6,17)(8,19)(10,14)(12,16)(22,30)(24,32), (1,15)(2,16)(3,13)(4,14)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(17,30)(18,31)(19,32)(20,29), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,13)(10,14)(11,15)(12,16)(21,29)(22,30)(23,31)(24,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,2,3,26)(4,27,28,25)(5,30,7,24)(6,31,19,29)(8,21,17,23)(9,14,11,12)(10,15,16,13)(18,32,20,22), (1,23,15,7)(2,8,16,24)(3,21,13,5)(4,6,14,22)(9,20,25,29)(10,30,26,17)(11,18,27,31)(12,32,28,19) );
G=PermutationGroup([[(2,28),(4,26),(6,17),(8,19),(10,14),(12,16),(22,30),(24,32)], [(1,15),(2,16),(3,13),(4,14),(5,21),(6,22),(7,23),(8,24),(9,25),(10,26),(11,27),(12,28),(17,30),(18,31),(19,32),(20,29)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,27),(2,28),(3,25),(4,26),(5,20),(6,17),(7,18),(8,19),(9,13),(10,14),(11,15),(12,16),(21,29),(22,30),(23,31),(24,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,2,3,26),(4,27,28,25),(5,30,7,24),(6,31,19,29),(8,21,17,23),(9,14,11,12),(10,15,16,13),(18,32,20,22)], [(1,23,15,7),(2,8,16,24),(3,21,13,5),(4,6,14,22),(9,20,25,29),(10,30,26,17),(11,18,27,31),(12,32,28,19)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | ··· | 4T |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | D4 | C4○D4 | C23⋊C4 | C23.C23 |
kernel | C24.175C23 | C4×C22⋊C4 | C23.7Q8 | C2×C23⋊C4 | C2×C4⋊D4 | C2×C22⋊C4 | C2×C4⋊C4 | C22×D4 | C22⋊C4 | C22×C4 | C23 | C4 | C2 |
# reps | 1 | 1 | 1 | 4 | 1 | 4 | 2 | 2 | 4 | 4 | 4 | 2 | 2 |
Matrix representation of C24.175C23 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 3 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 2 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 | 1 |
0 | 0 | 4 | 2 | 0 | 0 |
0 | 0 | 4 | 1 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 3 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,3,4,0,0,0,0,0,0,4,0,0,0,0,0,2,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[2,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,4,4,0,0,0,0,2,1,0,0,4,4,0,0,0,0,0,1,0,0],[0,2,0,0,0,0,3,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,4,0,0,1,0,0,0,0,0,0,1,0,0],[0,1,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4] >;
C24.175C23 in GAP, Magma, Sage, TeX
C_2^4._{175}C_2^3
% in TeX
G:=Group("C2^4.175C2^3");
// GroupNames label
G:=SmallGroup(128,696);
// by ID
G=gap.SmallGroup(128,696);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,288,422,100,2019,1018,2028]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=c,f^2=c*a=a*c,g^2=b,a*b=b*a,e*a*e^-1=f*a*f^-1=a*d=d*a,a*g=g*a,b*c=c*b,b*d=d*b,g*e*g^-1=b*e=e*b,b*f=f*b,b*g=g*b,f*c*f^-1=c*d=d*c,c*e=e*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,f*e*f^-1=a*e,f*g=g*f>;
// generators/relations